9 research outputs found

    KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis.

    Get PDF
    Successful fertilization in angiosperms depends on the proper trajectory of pollen tubes through the pistil tissues to reach the ovules. Pollen tubes first grow within the cell wall of the papilla cells, applying pressure to the cell. Mechanical forces are known to play a major role in plant cell shape by controlling the orientation of cortical microtubules (CMTs), which in turn mediate deposition of cellulose microfibrils (CMFs). Here, by combining imaging, genetic and chemical approaches, we show that isotropic reorientation of CMTs and CMFs in aged Col-0 and katanin1-5 (ktn1-5) papilla cells is accompanied by a tendency of pollen tubes to coil around the papillae. We show that this coiled phenotype is associated with specific mechanical properties of the cell walls that provide less resistance to pollen tube growth. Our results reveal an unexpected role for KTN1 in pollen tube guidance on the stigma by ensuring mechanical anisotropy of the papilla cell wall

    Réaction de l’épiderme stigmatique à la croissance de cellules invasives : le cas du tube pollinique et de l’hyphe des oomycètes

    Get PDF
    The epidermis is the first cellular barrier in direct contact with the environment in both animal and plant organisms. In plants, the result of the cell-to-cell communication that occurs between the pollen grain and the epidermal cells of the stigma, also called papillae, is crucial for successful reproduction. When accepted, the pollen grain germinates and emits a pollen tube that transports the male gametes towards the ovules. Effective fertilization in angiosperms depends on the proper trajectory that pollen tubes take while progressing within the pistil tissues to reach the ovules.Pollen tubes grow within the cell wall of the papilla cells, applying pressure to the wall. Such forces are known to alter the cortical microtubule (CMT) network and cell behaviour. The first part of my PhD thesis aimed at investigating the role of the microtubule cytoskeleton of stigmatic cells in pollen tube growth. By combining cell imaging and genetic approaches, we found that in the Arabidopsis katanin1-5 (ktn1-5) mutant, papillae have a highly isotropic CMT array, associated with a marked tendency of wild-type (WT) pollen tube to turn around the papillae. We could partially phenocopy this coiled growth of pollen tubes by treating WT papillae with the microtubule-depolymerizing drug oryzalin. As CMT pattern is linked to cellulose microfibrils organisation, and hence possibly to cell-wall stiffness, we assessed the stiffness of ktn1-5 and aged papillae using Atomic Force Microscopy. Altogether, our results suggest that both organisation of CMT and cell wall properties dependent on KATANIN have a major role in guiding early pollen tube growth in stigma papillae.Similarly to pollen tube growth within the stigmatic papilla, hypha of filamentous pathogens penetrates the epidermal tissue of the host. During pathogen attacks, epidermal cells promptly react to the invading organisms to adjust the most relevant response. Early response of the first cell layers including epidermal cells is decisive for the result of plant-pathogen interactions. The second part of my PhD work aimed at comparing the cellular response of stigmatic cells challenged by two types of invaders, the pollen tube during pollination and hyphae of two oomycete filamentous pathogens, Phytophtora parasitica and Hyaloperonospora arabidopsidis, during the infection process. We demonstrate that a stigmatic cell challenged by a pollen tube or an oomycete hypha adapts its response to the invader’s identity.Chez les plantes à fleurs, la communication entre les grains de pollen et les cellules épidermiques du stigmate, aussi appelées papilles, est cruciale pour le succès de la reproduction. Lorsqu’il est accepté, le grain de pollen germe et émet un tube pollinique qui transporte les gamètes mâles jusqu’aux ovules. La rencontre et la fusion entre les gamètes mâles et femelles reposent par conséquent sur la bonne trajectoire des tubes polliniques lors de leur progression dans les différents tissus du partenaire femelle pour atteindre les ovules. Les tubes polliniques croissent dans la paroi cellulaire des papilles stigmatiques et génèrent une pression sur ces dernières. De telles forces sont connues pour modifier le réseau de microtubules corticaux (MTC) ainsi que le comportement de la cellule. La première partie de ma thèse a consisté à étudier le rôle des MTC du stigmate dans le contrôle de la croissance du tube pollinique. En combinant imagerie cellulaire et approches génétiques, nous avons mis en évidence que chez le mutant katanin1-5 (ktn1-5) d’Arabidopsis, les papilles ont un réseau de MTC très isotrope, associé à une forte tendance des tubes polliniques sauvages à faire des spires autour des papilles. Ce phénotype a pu être partiellement reproduit par traitement des papilles avec un agent dépolymérisant les MTC, l’oryzaline. Compte tenu que le réseau de MTC est fortement lié à l’organisation des fibres de cellulose, et donc potentiellement à la rigidité de la paroi, nous avons mesuré la rigidité des papilles du mutant ktn1-5 grâce au microscope à force atomique. L’ensemble de ces résultats suggère que la KATANIN, en régulant l’organisation des MTC et conférant des propriétés mécaniques particulières à la paroi cellulaire, joue un rôle primordial dans le guidage des tubes polliniques lors de leur croissance dans les papilles stigmatiques. De façon similaire à la croissance des tubes dans les papilles, les hyphes des pathogènes filamenteux pénètrent les tissus épidermiques de leur hôte. Lors d’une attaque par un pathogène, les cellules de l’épiderme de l’hôte réagissent rapidement pour mettre en place une réponse appropriée, décisive sur le résultat de l’interaction plante-pathogène. La seconde partie de ma thèse a eu pour objectif de comparer la réponse cellulaire des papilles stigmatiques suite à l’invasion par deux types d’organismes, le tube pollinique lors de la pollinisation et les hyphes de deux Oomycètes pathogènes, Phytophtora parasitica et Hyaloperonospora arabidopsidis durant leurs processus d’infection. Nos résultats démontrent que la papille stigmatique est capable d’adapter sa réponse en fonction de l’identité de l’envahisseur

    KATANIN and cortical microtubule organization have a pivotal role in early pollen tube guidance

    No full text
    International audienceFollowing pollen deposition on the receptive surface of the stigma, pollen germinates a tube that carries male gametes toward the ovule where fertilization occurs. As soon as it emerges from the pollen grain, the pollen tube has to be properly guided through the pistil tissues so as to reach the ovule and ensure double fertilization. Chemical attractants, nutrients as well as receptor kinase-dependent signaling pathways have been implicated in this guidance. Recently, we showed in Arabidopsis that the microtubule severing enzyme KATANIN, by acting both on cortical microtubule (CMT) dynamics and cellulose microfibril (CMF) deposition, conferred particular mechanical properties to the papilla cell wall that act as active guidance factors. Here we confirm the importance of KATANIN and CMT orientation in pollen tube directionality by examining another katanin mutant

    Live-cell imaging of early events following pollen perception in self-incompatible Arabidopsis thaliana

    No full text
    International audienceEarly events occurring at the surface of the female organ are critical for plant reproduction, especially in species with a dry stigma. After landing on the stigmatic papilla cells, the pollen hydrates and germinates a tube, which penetrates the cell wall and grows towards the ovules to convey the male gametes to the embryo sac. In self-incompatible species within the Brassicaceae, these processes are blocked when the stigma encounters an incompatible pollen. Based on the generation of self-incompatible Arabidopsis lines and by setting up a live imaging system, we showed that control of pollen hydration has a central role in pollen selectivity. The faster the pollen pumps water from the papilla during an initial period of 10 min, the faster it germinates. Furthermore, we found that the self-incompatibility barriers act to block the proper hydration of incompatible pollen and, when hydration is promoted by high humidity, an additional control prevents pollen tube penetration into the stigmatic wall. In papilla cells, actin bundles focalize at the contact site with the compatible pollen but not with the incompatible pollen, raising the possibility that stigmatic cells react to the mechanical pressure applied by the invading growing tube

    The molecular signatures of compatible and incompatible pollination

    No full text
    16 Fertilization in flowering plants depends on the early contact and recognition of pollen grains by 17 the receptive papilla cells of the stigma. To identify the associated molecular pathways, we 18 developed a transcriptomic analysis based on single nucleotide polymorphisms (SNPs) present in 19 two Arabidopsis thaliana accessions, one used as female and the other as male. We succeeded in 20 distinguishing 80 % of transcripts according to their parental origins and drew up a catalog of genes 21 whose expression is modified after pollen-stigma interaction. Global analysis of our data reveals 22 that pattern-triggered immunity (PTI)-associated transcripts are upregulated after compatible 23 pollination. From our analysis, we predicted the activation of the Mitogen-activated Protein Kinase 24 3 on the female side after compatible pollination, which we confirmed through expression and 25 mutant analysis. Our work defines the molecular signatures of compatible and incompatible 26 pollination, highlights the active status of incompatible stigmas, and unravels a new MPK3-27 dependent cell wall feature associated with stigma-pollen interaction

    The molecular signatures of compatible and incompatible pollination in Arabidopsis.

    No full text
    BACKGROUND: Fertilization in flowering plants depends on the early contact and acceptance of pollen grains by the receptive papilla cells of the stigma. Deciphering the specific transcriptomic response of both pollen and stigmatic cells during their interaction constitutes an important challenge to better our understanding of this cell recognition event. RESULTS: Here we describe a transcriptomic analysis based on single nucleotide polymorphisms (SNPs) present in two Arabidopsis thaliana accessions, one used as female and the other as male. This strategy allowed us to distinguish 80% of transcripts according to their parental origins. We also developed a tool which predicts male/female specific expression for genes without SNP. We report an unanticipated transcriptional activity triggered in stigma upon incompatible pollination and show that following compatible interaction, components of the pattern-triggered immunity (PTI) pathway are induced on the female side. CONCLUSIONS: Our work unveils the molecular signatures of compatible and incompatible pollinations both at the male and female side. We provide invaluable resource and tools to identify potential new molecular players involved in pollen-stigma interaction

    Invasion of the stigma by the pollen tube or an oomycete pathogen: striking similarities and differences

    No full text
    Abstract The epidermis is the first barrier that protects organisms from surrounding stresses. Similar to the hyphae of filamentous pathogens that penetrate and invade the outer tissues of the host, the pollen germinates and grows a tube within epidermal cells of the stigma. Early responses of the epidermal layer are therefore decisive for the outcome of these two-cell interaction processes. Here, we aim at characterizing and comparing how the papillae of the stigma respond to intrusion attempts, either by hypha of the hemibiotrophic oomycete root pathogen, Phytophthora parasitica or by the pollen tube. We found that P. parasitica spores attach to the papillae and hyphae subsequently invade the entire pistil. Using transmission electron microscopy, we examined in detail the invasive growth characteristics of P. parasitica and found that the hypha passed through the stigmatic cell wall to grow in contact with the plasma membrane, contrary to the pollen tube that advanced engulfed within the two cell wall layers of the papilla. Further quantitative image analysis revealed that the pathogen and the pollen tube trigger reorganization of the endomembrane system (trans Golgi network, late endosome) and the actin cytoskeleton. Some of these remodeling processes are common to both invaders, while others appear to be more specific showing that the stigmatic cells trigger an appropriate response to the invading structure and somehow can recognize the invader that attempts to penetrate
    corecore